Inprinta UV Resistant Filters

The Inprinta range of UV filter capsules are designed specifically for the superwide graphics market and incorporates at the filters required along the ink path of your printer. All UV filters are manufactured utilizing carbon black as a permanent barrier to UV light which minimizes the risk of premature curing of UV ink. Ensuring the correct UV-resistant filter will ensure your printer has maximum up-time in between services and ink flow is not restricted.

Features and Benefits

- UV ink compatibility
- Ink will not prematurely cure
- Full UV protection
- High throughput
- Large range of capsule and in-line/last chance filters
- High throughput
- Excellent particle retention
- Designed and manufactured in the UK.

UV Inkjet Capsules

Inprinta capsules are self-contained, ready-to-use, disposable devices. The filter body is constructed with speckle black bonded and available with a wide range of connector configurations to suit different systems. All capsules will provide consistent, reliable printing performance with maximized printhead protection.

Filtration Technology

The filters are manufactured using a range of different materials and design characteristics. Our Polypropylene and Klearfil® pleated polymeric membranes are engineered as the principal barrier to any foreign bodies or aggregates. Our Polypropylene media benefits from a high pleat count and a large surface area which offers a high flow rate and a minimal pressure drop, with focused spectra particle removal properties. Our Klearfil® media has 8 graded filtration layers allowing for wide spectrum particle removal, general protection and high dirt holding capacity. The deep filter pack also demonstrates minimal distortion under pressure and a long service life.

An integrated secondary level of protection is added through an innovative design and the utilization of BioVyon® as a central carbon filter. BioVyon®, a co-cast sintered solid-state separation material, is manufactured from an ultra-pure, highly modified polymeric material with the lowest levels of particulates and contaminates.

Filter Cartridge Inlet/Outlet Styles

Connector: Male

Inlet: ⅜″ NPT (male)
Outlet: ⅜″ NPT (female)

Inlet: ⅜″ to ⅜″ barb
Outlet: ⅜″ to ⅜″ barb

Inlet: ¼″ NPT (male)
Outlet: ¼″ NPT (male)

Inlet: ½″ NPT (male)
Outlet: ½″ NPT (male)

Technical Information

- Last chance and inline filters come with a wide range of micron ratings.
- Filter material includes: Stainless steel mesh, Polymeric membrane, Metal fiber.
- Maximum effective filter area within compact designs.
- Excellent inkjet compatibility with UV materials.
- Low differential pressure.
- Superior protection from aggregates and contamination.

Filter Efficiency

- Capsule filters have removal efficiencies from 0.5µm to 60µm.
- Filters provide a high dirt holding capacity.
- Filters are manufactured to provide low differential pressure values.
- Filters rated to 2000 hours. *

Filter Media

- Filter cartridge: Vyon® core
- Microprint® core
- Microjet® core
- Microcap® core

Testing

- Filter cycles: Tested to 100,000 cycles/pulses at 5 bar (70psi)•
- Pressure validation: 100% of capsule filters tested to 6 bar (87psi).
- Filter units are bubble tested for verified optimum micron ratings.

UV In-line and Last Chance Filters

These filter assemblies are provided as solutions for UV inkjet applications from a list of inert materials with minimal remanent UV to ensure ink life will not be contaminated. Filters are compact to slip fitting the already exists priming housing, and come with a varying range of connectors. All filters exhibit superior flow characteristics and ensure consistent reliable printing performance with maximised printhead protection.

Filtration Technology

Supplied with a variety of filtration media, including; Polyjet favourites, Polymide, Nylon, Polypropylene, stainless steel mesh, and metal fiber. Filtration rating starts at sub 1µm and increases up to 100µm. Filters are designed to run effectively with all UV Inks. Filter barriers are constructed from high grade materials before being welded into the UV filter housing to give a fully integrated filter assembly. The first assembly is designed to allow maximum throughput with minimal pressure drop and zero ink carry across the filter path.

Filter cartridge Vyon® media benefits from a high pleat count and a large surface area which offers a high flow rate and a minimal pressure drop, with focused spectra particle removal properties. Our Klearfil® media has 8 graded filtration layers allowing for wide spectrum particle removal, general protection and high dirt holding capacity. The deep filter pack also demonstrates minimal distortion under pressure and a long service life.

Filter integrity

Filter units are bubble tested for verified optimum micron ratings.

* It is the responsibility of the user to test for optimum run time between servicing

** Dependant on capsule type.
Ordering Information

For further information on our product range or manufacturing services, please contact us as follows:

Guinness Close, St Marys Industrial Estate
New Milton, Hampshire
BH25 5NN, UK
T: +44 (0)1425 612010
E: info@inprinta.com

301 Business Lane
Ashland, Virginia 23005, USA
T: +1 804 550 1600
E: info@inprinta.com

Chengdong Area
Chengdong Industrial Park, North District
Xiaogan, 432000, China
T: +86 (0)712 2878955
E: info@inprinta.com

www.inprinta.com

Inprinta and Vyon are registered trademarks of Porvair Plc.
BioVyon, Microcap, Microdisc, Microjet and Microprint are trademarks of Porvair Plc.
Jaco is a registered trademark of Jaco Company.
© Copyright 2012. Inprinta. All rights reserved.

Whilst every effort has been made to ensure the accuracy of this document, due to continuous product development, the data contained is subject to constant revision and Inprinta reserves the right to change, alter or modify its contents.

Inprinta products are not the original, but are compatible parts and they are not produced by, or have been endorsed by the manufacturers stated in Inprinta marketing material and literature. All other companies referenced herein are trademarks and/or registered trademarks of their respective companies.